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Abstract

This paper presents a probabilistic analysis of plausible reasoning about defaults and about like-
lihood. "Likely" and "by default" are in fact treated as duals in the same sense as _possibility" and
"necessity". To model these four forms probabilistically, a logic QDP and its quantitative counter-
part DP are derived that allow qualitative and corresponding quantitative reasoning. Consistency
and consequence results for subsets of the logics are given that require at most a quadratic number of
satisfiability tests in the underlying propositional logic. The quantitative logic shows how to track the
propagation error inherent in these reasoning forms. The methodology and sound framework of the
system highlights their approximate nature, the dualities, and the need for complementary reasoning
about relevance.
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1 Introduction

Default reasoning is a form of non-monotonic reasoning which can be introduced by Delgrande [1] as
follows:

Many common sense assertions about the real world express default or prototypical properties

of individuals or classes of individuals, rather than strict conditional relations. Thus, for

example, "birds fly" attributes the property of flight to birds, even though birds with broken

wings generally don't fly, and quite probably no penguin flies. The import of "birds fly" then
certainly isn't that all birds fly, but rather is more along the lines of "typically birds fly".

This form of default reasoning then is concerned with drawing "typical" conclusions. There is a continu-

ously growing and diverging variety of theoretical treatments on this and other forms of non-monotonic

reasoning [2,3,1,4,5,6,7,8].

Likelihood reasoning, another form of plausible reasoning, is more concerned with drawing "likely"

conclusions. For example, it is "likely" or reasonably possible that a coin tossed twice will land heads

both times, although this certainly is not _typica_y" the case. It is not _iikely', however, that a coin

tossed twice will land on its side one of those times. Although the laws of physics might treat this as

a "possible" outcome, for most practical purposes it is not. When one is considering possible outcomes,

rather than looking at al/, likelihood reasoning is intended to be applied to find only those outcomes that
are reasonably possible. A historical perspective and further discussion for this form of reasoning can be

found in [9].

The relationship between probability and plausible reasoning is best introduced by Polya [10, Chapter

XV_ in his work on reasoning in mathematics. Polya introduced a system of guides to the mathematician
of the form:

[Given a conjecture,] the verification of a consequence renders the conjecture more credible.

Our confidence in a conjecture can only increase when an incompatible rival conjecture has

been exploded.

These guides were based on belief about conjectures modelled as subjective probabilities. Plausible rea-

soning about default and likelihood, however, has more often been modelled in AI using purely logical

formalisms [5,1,6,9] or non-standard probabllistic methods [11,12,13], although probability-motivated ap-

proaches exist [7,14]. Another form of reasoning seen in areas such as qualitative physics and model-based
diagnosis systems is the qualitative and approximate reasoning about physical devises. In this paper we

combine the two paradigms, probabilistic and qualitative/approximate, to model default and likelihood

reasoning, and so take up Polya's theme more fully.
Surprising to some, it is controversial whether these plausible reasoning forms can be modelled with

probabilities I [15,4,16]. Likelihood reasoning and some forms of default reasoning, however, will always

remain problems of uncertainty or incomplete information. With some forms of non-monotonic reasoning,
such as the closed-world assumption used in database systems and PROLOQ, uncertainty does not exist

because the default is actually a convention. These exceptions aside, there comes a time when something

that is currently "typically" or "likely" to hold becomes known true or false. Until that time, we are in

a state of uncertainty. However well logical systems may cope with modelling these reasoning forms, we

1Cheeseman has said [15, p1002]:

Unforttmate]y, the logical Jtyle of reasoning is so preval_ t in KI that many J_ve attempted to force intrirusically

probabilistic situations into a logical straight jacket with predictable K_ted succ_6_ _ _i



should at least see how they can be modelled by a theory of uncertainty like probability. Perhaps there is
more to learn?

This paper follows the view that subjective Bayesian probability theory provides a benchmark against
which methods for reasoning about uncertainty can be compared. The theory is a norma_i_e theory

of reasoning about uncertainty, which means it gives a prescription for how uncertain reasoning should
be done. The prescription itself has been derived from a set of fundamental _ioms about belief (an

introduction to this in the AI context is in [17]). One can model default and likelihood reasoning as either

qualitative or quantitative approximations to full normative probabilistic reasoning. One can then argue
that the resulting model seems to exhibit the required properties, and compare the model with some

existing methods.

A logic QDP (a mnemomic for qualitative default probabillstic logic) is developed here from a suitable

quantitative counterpart DP as a demonstration. This yields a probabilistic system as a canvas on which a

number of more significant issues can be sketched. These issues are: (1) the interplay between quantitative

and qualitative forms of plausible reasoning, (2) the duality between default and likelihood reasoning, (3)

the approximate nature of these reasoning forms, for instance, the propagation of errors in reasoning, and

(4) the need for complementary reasoning about, for instance, relevance.

The logic QDP, being probabilistieally based, is easily able to express sentences 2 such as "most birds

fly". This is using a "default" conditional style operator ":_" as in: Bird(z) ::_ FI_es(z). Similarly, "an
Australian is likely to drink Foster's "3 can be represented with a "likely" conditional style operator "_-"

as in: Australian _- Drinl_s-Foster's. This operator also has iterated forms indicated by numeric super-

scripts, "_--2", that express lesser degrees of likelihood, as in: Australian _.2 Drinks-another-Foster's,

which expresses the fact that, at least occasionly, an Australian will drink even more Foster's.

Surprisingly enough, QDP is also able to express sentences more in the spirit of autoepistemic [18]

and default logics [2]. We can interpret the sentence "a professor has a Ph.D. unless known otherwise"

two ways:

o(Pro.f(z) ^ Phd(z)) _ (Prof(z) :_ Phd(z)) ,

o(Pro/(=) ^ Phd(z)) ----* rl(Pro/(z) ---, Phd(z)) ,

where the "D" operator represents necessity interpreted as "known with certainty", and the dual "¢"

operator represents possibility interpreted as "the negation is not known with certainty". Read as "if it

is possible that a particular professor has a PhD, then the professor most likely/has a Ph.D.", and "if it is

possible that a particular professor has a PhD, then the professor de]initel_/has a Ph.D." respectively. The

default logic representation, from Pro/(=) ^ M Phd(z) infer Phd(=), corresponds to the second reading.
So the possibility operator, "o", behaves rather like the M operator of default logic.

The default component of the logic QDP is a variant and extension of Adams' conditional logic

[19], applied to default reasoning by Pearl [7]. The probabilistic semantics of QDP differs slightly from

Adams' logic however, because QDP is developed as a qualitative model for order of magnitude reasoning
about probabilities, rather than being based on infinitesimal arguments. Like Adams' logic, QDP can

be combined with a notion of relevance or causality to resolve the so-called default paradoxes: the Yale

shooting problem [8] and "can Joe read and write?" [7]. The logics also resolves the _vanishing subclasses"

paradox [20]. These three paradoxes are discussed in Section 5. A fourth paradox is the lottery paradox

[3], considered in Section 3. This has a version both in default and likelihood reasoning, and provides an
example of the propagation of errors inherent in these reasoning forms.

The logics has been modelled after Delgrande's modal conditional logic NP which allowed reasoning

about default rules. Likewise, reasoning about defaults and likelihood is an important feature of the

2Although propositional sentences are dealt with throughout, pseudo-first-order sentences will sometimes be used. They
are effectively propositional if there are known to be a l_mitenumber of constants, no quantitiem are allowed, and a sentence
with variables is inteffizdedto represent a _mtcmce schem_a_

SFor the record, many Australians dcm't. $c_ne drink XXXX. others Swan .....



approach here. For example, suppose you know friends have travelled to Australia. Then they are likely

to have visited Sydney. Although any visitor to Sydney will typically see the Sydney Harbour Bridge,

it is only likely that they will visit Bondi Beach. We can infer that your friend is likely to (rather than

"typically") have seen the Harbour Bridge but is less likely to have visited Bondi. In QDP, this argument
can be summed up as follows:.

_QDP

true _ Vi$ibSydney( Bruce)

Visit-Sydney(z) _ See-Harbour-Bridge(z)

Visit.Sydney(z) _,- V isii. Bondi( z )

( See- B,',,,:e)) ^ (t,',,e V  o,*di( B,',,,:e)) .

Consistency and consequence tests developed for subsets of the default and likelihood components of the

logics also show how this form of reasoning can be automated in a manner requiring at most a quadratic

number of satisfiability tests in the underlying propositional logic. With a careful choice of the underlying

propositional logic, the operation can then be quite efficient.
Perhaps most significantly, this reasoning can be easily complemented with error tracking facilities

to indicate when the conclusions from a chain of such plausible reasoning may be coming doubtful. For

instance, it is shown in some circumstances that error when reasoning about defaults can increase at most

additively, while error when reasoning about likelihood can increase multiplicatively. It is not claimed,
however, that these tracking facilities are a substitute for a more thorough probabilistic approach; they

are merely an approximation.
The paper follows the following course. First, the philosophical problem of modelling default reasoning

with probabilities is considered in Section 2. The corresponding discussion for likelihood reasoning is not

given here, because the principle objections in AI to modelling likelihood reasoning with probabilities do
not centre around the use of probability theory at all, but whether the modelling should be qualitative or

quantitative [9], and both are done here. A basic probabilistic framework for plausible reasoning is then
proposed in Section 3. Two logics, one with a probabilistic semantics, DP, and a qualitative version, QDP,
are then introduced in Section 4. Here, the duality between default and likelihood is introduced, and the

consistency and consequence results are developed. Section 5 demonstrates a methodology for applying
the qualitative logic, using relevance, and Section 6 draws some comparisons with other probabilistic

approaches.

2 On Modelling Default Reasoning with Subjective Bayesian

Probability

Non-monotonic reasoning is generally considered to have three broad forms [4,18]: autoepistemic reasoning

is reasoning about self-knowledge of beliefs [18], for instance, "if I had an older brother I would know

about it"; conventions are used in the interpretation of natural language and with the closed-world

assumption often made for database systems; and typicality or defaul_ reasoning is the form discussed
in the Introduction.

To illustrate the use of convention in natural language, consider the sentence "birds lay eggs" [16],

which is certainly not true for the male half of the bird population. The sentence is more accurately stated

as "[female] birds lay eggs [to reproduce]". The parts in the square brackets are implicit. Most people
realise that male birds cannot lay eggs, so in the interests of brevity, the speaker leaves "female" to be

inferred from the remainder of the sentence. This implicit convention is handled in nonmonotonic systems

using knowledge of the form "an X is a Y unless known otherwise". As illustrated in the introduction, this

form can also be represented in a probabilistic framework using the probabilistic version of the possibility

and necessity operator_s.
When modelling the third form, typicali{y or defanlt reasoning, we are hampered by the fact =that



thereis little consensusasto its exactnature[20].HanksandMcDermott[8]say,

V_rhile it is not entirely clear ezac_y what constitutes default reasoning, the phenomenon

commonly manifests itself when we know what conclusions should be drawn about lypical

situations or objects, ...

Neufeld, Poole and Aleliunas [20] make an even stronger statement. They say,

What, then, does a default mean? Within the default logic camp, we know of no work which

provides a semantics for defaults, in the sense that an experiment is described that can be

performed in the semantic domain to verify the truth of a default.

However, there is general agreement that default reasoning is a form of "defensible inference", or "plausible

reasoning" [21,8], and that default conclusions have some (often small [21]) degree of uncertainty to them.

Given that default reasoning is an admittedly specialised form of reasoning under uncertainty, it is

natural to pose the question: can probability theory model default reasoning (see also [7])? Critics of a

Bayesian approach claim that probabilities are just not suited for describing "prototypical _ knowledge.

Must arguments, however, are based on some misunderstanding.

Nutter [16] gives the following argument:

For instance: if... the by now tormented example "Birds fly" really means "Most birds fly",

then birds don't fly in spring. In the nesting season, baby birds outnumber adults. Baby birds

don't fly. Hence in the nesting season, "Most birds fly" is false.

To the Bayesian, "Most birds fly_ is interpreted as _if we know nothing else about a particular bird, then

that bird most likely flies _. Notice the "most likely" conclusion is conditioned on our current knowledge
about the bird. In particular, if we know it is nesting season, we cannot conclude the bird most likely flies

because we do now know some additional thing about the bird. Two rules are relevant to the situations

Nutter gives: "Most birds fly_ and "In the nesting season, most birds don't fly_. If we do not know that

it is the nesting season, then the first rule is applicable because it usually is not the nesting season. The

importance of conditioning probabilistic statements with context or current knowledge is a key feature of

probabilistic reasoning and the cornerstone of the subjective Bayesian approach.
McCarthy address a similar concern [4, p92].

Note that the general probability that a bird can fly may be irrelevant, because we are in-
terested in the facts that influence our opinion about whether s particular bird can fly in a

particular situation.

Classical statistics, with its concern about long term frequencies and samples spaces, can have problems in

adapting general knowledge to specific situations. The ability to adapt knowledge to particular situations,

however, is a hallmark of Bayesian methods. In this case, suppose we know that the bird is a male yellow-
bellied warbler, but we have no knowledge at all about this type of bird, or even what they may be similar

to. The only relevant knowledge we have is the general probability statement that most birds fly. In the
absense of information to the contrary, we assume that other details about the bird are irrelevant (this is

the maximum entropy argument [7]), which leads us to the quite reasonable conclusion that most male

yellow-bellied warblers fly. We can now reason about this particular bird.
There are, however, strong arguments that default reasoning should be modelled by probability with

cau_ion_ In practice, an intelligent system may not be able to supply precise probabilities for its beliefs



and may not be able to perform allthe exact calculationsrequiredto maintain itsbeliefsin accord with

Bayesian principlesas new evidence becomes available.People certainlycannot. Itisof course not just

the computation that causes problems but the communication required to prime and then update an

intelligentsystem with an adequate set ofbeliefs.

The normative propertiesof Bayesian theory assures us that despitethese problems, by trying to

approximate the Bayesian approach our reasoningat leastremains approximately rational.Essentially,it

isthe best we can do in an inherentlyimpreciseand computationally complex world. This view has been

supported in AI alone in a range of areas [22,23,24,25].

3 A Framework for Plausible Reasoning

In thissection,a basicframework for defaultand likelihoodreasoning isdeveloped. These two forms of

reasoning are referredto below as plausiblereasoning.Before presentingthe framework, we firstconsider

some major featuresof plausiblereasoning,and then inferpropertiesthat a plausiblereasoning system

should have.

3.1 Basic features of plausible reasoning

There are severalbasicfeaturesofplausiblereasoningthat must effectthe designof a plausiblereasoning

system. While thesecan be derivedfrom the probabilisticmodel presentedinthe next section,the features

are presented here independently ofany probabUisticanalysis.

Plausible reasoning is non-monotonic

With standard logical reasoning, conclusions derivable from a set of sentences increase monotonically as
the set of sentences is extended. That is, if S logically implies C, and we extend S with A, then S ^ A

also logically implies C.
Default reasoning is known to be non-monotonic [3]; the above monotonicity property breaks down.

So while you might well believe that birds fly, on discovering that a certain bird is a baby bird in nesting
season, you would no longer believe that particular bird flies. So your set of beliefs have extended one

way but contracted another. Similarly, something that initially seems likely can become, with changing

circumstances, well nigh impossible.

Error combines alon-g a-chaln of plausible reason'rag •

A second key feature of standard logical reasoning is that if the . premises are known to be true, then the
conclusion from a long chain" of reasoning steps must also be true. With plausible reasoning, however,
there is an inherent element of uncertainty involved, so it is natural to suspect this key feature might

break down. _.... ----

The famous lottery paradox [3] is an excellent example of this. For a single lottery entrant, Leslie say,
one can conclude by default that Leslie will not win the lottery. But we can apply this sort of reasoning

to every potential lottery entrant. There are two paradoxes here. First, why is it that someone actually
wins the lottery. Second, why does Leslie bother to enter the lottery in the first place.

For a lottery with one million entrants, the default conclusion about Leslie has an obvious statistical
error of one ten-thousandth of 1%, acceptable by most standards. If we make a logical deduction based

on one million such default conclusions, the one million errors certainly combine to give a total error of

100% (after all, someone d_nitely wins the lottery). That Les_e wouTd enter the lottery at a_is as much
irrational behaviour due to the effect of large sums of money, as it is the result of plausible reasoning.

Perhaps it is because most people do not mind losing one dollar just robe given the remotest chance of

winning one million dollars. In the former, their life is no different; in the latter, well_..

This last point anticipates the next basic feature of plausible reasoning.

6



Plausiblereasoningis eiTected by the decision context

After a system performs plausible reasoning, it would typically decide some course of action. As a result of
the action, the system might make some g_n or incur some loss. For Leslie in the lottery situation above

the potential loss is one doI]ar while the potential gain is one million minus one dollars. This feature of

reasoning is referred to as the decision contezt and the losses and gains as the utilities.
Shoham provides the following illustration of how the decision context can effect plausible reasoning.

... think of making the default inference "people you'll meet on the street will not stab you
in the back _ in a city in which only 5% of the population are back stabbers. In this case the

relatively small chance of being hurt seems to outweigh the computational resources needed"
to reason about individual people on the street, and the discomfort of wearing a steel-plated

vest. Notice that if the 5% dropped to 0.00000000005%, we'd take off the armor and stop

looking darkly at passers by.

Clearly, the decision context should be taken into consideration (see also [26]).

3.2 Basic properties of a plausible reasoning system

The above features can be used to argue that a method for plausible reasoning should have certain basic

properties.
A first property is that plausible reasoning needs to be sensitive both to the current knowledge of

the system and to the decision eontezt. This is directly suggested by the features given in the previous
subsection. Sensitivity to the decision context can be handled by targeting a default system for a single

decision context.

Now the number of different states of knowledge is potentially exponential in the number of propo-

sitional symbols. So a system could not reasonably keep separate default rules for each possible state

of knowledge and decision context. To get around this problem, a second property seems important: it
should be possible to reason about plausible rules and the releranee of different fac_ to the applicability of

a plausible rule. It may also be useful to give a system the ability to compile plausible rules from some

more fundamental knowledge form.

Third, because of non-monotonicity and error propagation, plausible conclusions need to be flagged as
such, and should not be confused with the current knowledge. In fact, because of the possible need for

weighing up bellef when combining error or considering the decision context, plausible conclusions may
need to be tagged with some form of qualitative or quantitative measure of belief. Whether this is done

and how surely depends on the application concerned; no single approach will be favoured in this paper.

3.3 A probabilistic framework

It is beyond the scope of this paper to cover the basic notions of probability and decision theory underlying

subsequent sections. Suitable introductions from an AI perspective can be found in [26,27,7]. The problem
of the decision context in plausible reasoning is side-stepped here by assuming that a default system is

being prepared for a specific binary (yes/no) decision. In this simple case, a decision has to be made
whether some condition, A say, is "true" or _mlse'. Once utilities of the problem are taken into account,

the problem invariably reduces to "is Pr(A) >__p?" for some p E [0, 1]. Given a particular decision

context for a binary decision, we can therefore use approximate inequality reasoning to make decisions in
a normative manner.

The notion of probability used here is subjectire probability, which is a measure of belief prescribed to

some proposition by an intelligent system. This is represented as Pr(AIB ) E [0, 1], interpreted as follows:

a particular intelligent system, on knowing just B, has a measure of belief Pr(A[B) in A being true. The

"]" operator is called the conditioning operator. Its left hand side is the proposition whose belief is being



considered and its right hand side specifies all current knowledge relevant to A of the intelligent system.

A probability distr_bufion is a particular function Pr consistent with the standard axioms of probability

theory.
A probabilistic framework for plausible reasoning is based on the assumptions that (1) plausible state-

ments that are uncertain should be interpreted in some way using subjective probability statements, and

that (2) methods of plausible reasoning which deal with uncertainty should be interpreted as approxi-
mations to subjective probability or decision theory. We shall treat a default conclusion as a plausible

proposition in which one has %uffieiently high beliet _. Similarly, a likely conclusion is a plausible propo-
sition in which one has "belief that it is reasonably possible". In both cases, the belief is modelled as

subjective probability and should be conditioned on current knowledge using the conditioning operator.
Due to the decision theoretic argument above, both these types of plausible reasoning should, in many

cases, be a good approximation to the normative probabilistic approach.

Notice that this rough probabilistic interpretation of defaults and likelihood automatically provides a
framework which addresses the basic properties of plausible reasoning discussed in this section. Decision

theory provides the basis for considering the decision context. The conditioning operator provides the
mechanism for making plausible conclusions sensitive to a system's current knowledge and for keeping

plausible conclusions (on the left hand side) separate from current knowledge (on the right hand side).
Probability theory also provides the potential for developing ways of reasoning about plausible rules,

and with the notion of independence, ways of reasoning about relevance. Some of these connections are

explored more fully in the next section. Finally, probability theory provides a framework for both testing

and developing default rules for a given application, for instance, by learning them from examples.

4 Default Probabilistic Logic

This section introduces two logics for default and likelihood reasoning: a probabilistic logic DP and

its qualitative counterpart QDP. These are applicable in the broad framework given in Section 3 for
reasoning about defaults and likelihood. Notation and semantics of these logics are fu'st covered in
Sections 4.2 and 4.3. Some basic properties of the logics are then outlined. One theme of this paper is the

importance of reasoning about relevance; Section 4.5 motivates this and shows how relevance information
can interface with default and likelihood reasoning. Another theme of the paper is the approximate nature

of both these reasoning forms; Section 4.6 shows how, for small errors at least, the quantitative logic DP
can be treated as a simple numeric extension of the qualitative logic QDP. This last section presents

consistency and consequence results for fragments of both logics.

4.1 Introduction

DP is a propositional logic annotated with probability bounds, and has a probabilistic rather than a
possible world semantics. This allows the sort of inequality reasoning found in Quinlan's INFERNO

[28]. inequality reasoning is an approximation to normative reasoning about point probabilities when a
decision is binary, as explained in Section 3.3. So the justification for DP is approbation, rather than

some fundamental principle about intervals or fuzzy sets for reasoning under uncertainty. In this sense, it

differs in philosophy from Ginsberg's suggestion [12] or Dubois and Prade's treatment of syllogism's [13].

QDP has the annotations dropped, and the default component is almost identical to Geffner and
Pearl's logic of defaults [7,29] borrowed from Adams' logic of conditionals [30,19]. QDP is also similar to

Delgrande's conditional logic NP [1].
QDP is designed to be a qualitative counterpart of DP. It is intended to be an approximation to

DP for reasoning about %mall _ but not infinitesimal probabilities. The semantics of QDP complements
DP and is based on order of magnitude reasoning. Like NP, dynamic aspects of plausible reasoning

(for instance, involving action and time) are not handled directly by either DP or QDP, although they
can often be handled with a simple situation calculus, as is done in Section 5.3. In the general case, an



extension of the logic would be required.

4.2 Basic notation

A standard propositionallanguage denoted Lp isused here. This isformed in the usual manner from a

finiteset ofatomic propositionsP = {Pl,.-., Pn} togetherwith true and false,the standard connectives,

--(negation),--4(conditional),A (conjunction),V (disjunction)and _ (biconditional)."_ A" denotes

that propositionalformula A isa theorem ofthe usual propositionallogic.

Probabilitydistributionscan be givenover the language Lp as follows.An event spaceEp, a mutually

exclusiveand exhaustive set of events,is readilyconstructed from a subset of Lp. Given n atomic

propositionsP as described above, thiswould have cardinality2" and one such set isgiven by

Ep = { L, A...A L, Ifor i= l,...,n, Li = p_ or --p_} . (I)

A probabilitydistributionPr :Ep _-_[0,1]maps events to measures ofbelief.For A, B 6 Lp

Pr(A) - E Pr(e),
eEEp
_e--* A

if Pr(A) > 0Pr( B IA) = ,t otherwise

In many probability texts, if Pr(A) -- 0 then Pr(B[A) is undefined. Instead we assert that if Pr(A) = 0

then Pr(BIA ) = 1. This means we can reason about conditional probabilities even if the antecedent of

the conditioning is false. A probability distribution like Pr above is termed a distribution over Lp.

The probabilistic logic DP describes constraints on probability distributions over the language Lp. It
is built on the language Dp that is constructed from Lp together with four modal operators: the unary

connectives[](necessity),o (possibility),and the binary connectives::_(defaultwith errorbound) and

_- (likelihoodwith lower bound). There isno nestingoftheseoperators.Nesting would representsecond

and higher-orderprobabilitystatements [31],as used in learningto reason about beliefin probabilistlc

models [25],but isunnecessary forthe initialtreatment here.The operatorscan be interpretedas follows.

hA: A isnecessarilytrue in any situation.

oA: Some situationcan possiblyarisein which A istrue.

A =_f B: Given that you know just A about the currentsituation,itissafeto inferB by default(with

errorinbeliefat most e).

A _--_B: Given that you know just A about the currentsituation,B isat leastlikely(withbeliefno

lessthan e).

In the language QDp the subscriptsare dropped. QDp alsohas successivelyweaker forms ofthe likelihood

operator.A _- B denotes "likely',whereas A _.2 B would denote "barelylikely',etc.This isrelatedto

the iteratedlikelihoodoperator found in [14].

A _.-" B: Given that you know just A about the currentsituation,B isat leastlikelyto be ... to be

likely(to order n).

Both the likelihoodand defaultoperators are conditionaloperators,in a similarsense to [1]. For

instance,in the cases above each isconditionedon A. Itwillbe shown laterthat itisunnecessary forthe

necessityand possibilityoperators to have conditionalforms.

Definition 4.1 The sentences or well formed formulae (wiTs) of Dp comprise the least set such that



I. If A 6 Lp then OA is a toff.

_,. I/A, B E Lp then A =:,, B is a wff for 0 <_ • < 1.

3. If D, E E De then -_D and D --* E are toffs.

Conjunction (^), disjnnction (V), and bieonditional (*-*) on sentences in Dp, and possibility (o) and

likelihood (m_-) on sentences in Lp are introduced by definition.

Definition 4.2 The sentences or well formed formulae of QDp eonsis_ of the sentences of Dp with

the numeric subscripts dropped from _" and _'. The ";_" operator may have optional integer

superscripts weakening the order of likelihood.

Some examples of QDP sentences were given in the introduction. The four modal operators have

operator precedence midway between disjunction and conditional/biconditional. So a disjunction binds
before a default operator, and a default operator binds before a conditional. For instance, the sentence

AvBAC _ D-_oEAF

is identical to the sentence

Although,

is identical to the sentence

((Av (B ^ C)) z)) -. o(E ^ F).

oAAB =_ C

(oA)̂ (B c),

because otherwise the sentence does not parse.

4.3 Semantics

In DP, "_p, D _ denotes that D 6 D_, is true for the probability distribution Pr. Pr plays a role not

unlike an interpretation in standard propositional logic.

Definition 4.3 Giren a probability distribetion Pr on L_,, '_=I'," is defined on sentences from Dp as

follows.

I. _p, OA if and on/l/if Pr(A) = 1.

_. _,, A =t,, B i/and only if Pr(Bla ) >_ I -,.

3. _p, -_D if and onh./ if not _pr D.

4. _1", D --, E if and only if not _1", D or _1", E.

Possibility and likelihood axe by definition dual operators for necessity and default respectively. "oA"

is defined as "--,t3-_A", so _,r oA if and only ifPr(A) > 0. _A a_-e B" is defined as "-,(A =_e --,B)", so

A _-, B if and only if Pr(BIA ) > e. In addition, "1=_, B" is shorthand for "true =_e B', and likewise for

_ _1,_ 1't ,

If the necessity operator were to have a conditional version, it would have the semantics Pr(BIA) = 1,

but since this is equivalent to Pr(A ---, B) = 1, a conditional form of necessity can be adequately

constructed as [3(A --, B). Likewise, a conditional version of the possibility operator can be constructed

as oA --. o(A ^ B).
A map translating probabilities to subsequent modal representation is given in Figure 1. By convention,

"=_" is subscripted by greek letters e, 5, etc., which are intended to be small (<< 1), whereas, "_-" is

subscripted by the letters e, f, etc., which are intended to be not as small. This is no absolute restriction;

it gives an indication of the intent of the sentences.
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Definition 4.4 A sentence D E Dp is a theorem of the probabilistic logic DP if _p, D for all possible

probability distributions Pr. This is denoted '_=DP D'. D is a consequence of a set of sentences Y if

there are D1,..., D, E r such that _DP (DI A... A Dn) --+ D. D is consistent if",D is not a theorem of
DP.

To obtain qualitative rules about default and likelihood from the quantitative rules in DP, we can

perform order of magnitude reasoning. We can consider a representative default error, e, where e might

be less than 0.01, or whatever the decision context requires. Likewise, we can consider a representative

default likelihood, e, where e might be greater than 0.05, say. The choice for modelling particular limits
rather than some arbitrary infinitesimal is motivated by the decision theoretic argument at the beginning

of Section 3.3. In order to approximate the behaviour of our reasoning with these particular limits in

mind, we can parameterise the system by e and e and consider only approximate calculations to O(e)

and O(e). A map translating probabilities to these kinds of qualitative values is given in Figure 2. The

hashed regions represent those fuT.zy boundaries where the qualitative reasoning becomes most susceptible
to error.

QDp is defined in a manner such that • and e are arbitrarily small, but e is also arbitrarily smaller

than e. Of course, it is unrealistic to expect arbitrarily small magnitudes for e and e to be achieved, let

alone the right relative magnitudes. This, however, is irrelevant, as far as the application of the logic is

concerned. The "arbitrarily small" magnitudes are only being used as a theoretical device to investigate

the approz/mate behaviour of notions like "=_" and "_.-" for • being small and e being not quite as small

(see also [7, Section 10.2.4]). In a_tdition, the choice of relative magnitude between • and e is a particular

design decision that might just as well have been made some other way. Applications of QDP should of
course take this into account.

Definition 4.5 A sentence D E QDp is a theorem of the qualitative probabilistic logic QPD if there

ezists a theorem D' G Dp corresponding to D (tha_ is, identical ezcept for any super or subscripts), in

which all subscripts to _ " and _ " are parameterised by some variables • and e and each subscript to

" is of order e as • approaches 0 and e remains finfle, and each subscript in D _ corresponding to '*;_-""

in D is of order e" as e and _ approach O. This is denoted '_=QD/' D'. Consequence and consistency
are defined as before.

From the definition of "_-" (for e > •) it follows that

Consequently,

I=q.D._ "-,(_ .4 ^ _.. -.,4). (2)

That is, if something is likely, its negation cannot be true by default. But the complementary sentence

(t_ A v t=_ -,A), is not a theorem.
It follows directly from this definition that the set of theorems of QDP is closed under application of

modus ponens and conjunction. That is,

_vP D and _, D -* E implies _/, E ,

_DP Dand _DP E if and only if _DP DAE.

Because the definition of QDP is based on an order of magnitude argument, there are potential pitfalls
with these closure properties. Order of magnitude arguments invariably give dubious results when the

constant factors become too large. Suppose a lottery has 1,000,000 participants. The following sentence

can be shown to be a theorem of DP.

1,000,000

A I=_, (person i will not win the lottery) --* [:f;_l,0O0,0oo., (no-one will win the lottery) . (3)
i=1
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Moreover, replacing the error bound 1,000, 000. • by 999,999 * • yields a sentence that is not a theorem of

QDP. Without the error bounds, the sentence would seem to read "if, by default, any particular person

will not win the lottery, then, by default, no-one will win the lottery at all". The illusory lottery paradox
1 thehas reappeared. In DP this is not the correct reading because with the natural value for •, 1,oo5,ooo,

right hand side of rule (3) is impotent (its default error is 1). In QDP unfortunately, it is the correct

reading: QDP drops the subscripts (both are of order e as e approaches 0) and loses the error information.
If we wish a purely qualitative default logic to be closed under conjunction and modus ponens, two

seemingly intuitive properties, then we have no choice but to accept that the above kind of anomaly

may occur. People get around this with an intuitive knowledge of where plausible reasoning is likely to
break down, for instance, by not making default or likelihood inference to any great depth: "don't rest

your argument on too many assumptions, something is bound to go wrong along the way!". Default and
likelihood reasoning may well produce incorrect results when carried on indefinitely; they should, however,

be "locally _ correct. Imprecision is an inherent property of plausible reasoning; so knowledge of how to

contain the imprecision is a prerequisite for safe plausible reasoning. Hence the importance of DP in

understanding Q D P.

4.4 Basic theorems

This section introduces a few basic theorem schemata, and discusses several notable but unrelated prop-

erties of the logics. Examples of using the logic QDP are given later in Section 5.

First, the default and likelihood operators can be broken down into two components, according to
whether the antecedent is possible or impossible. This is done using

_QDP A::_B _ (O-,A V oAAA=_B). (4)

The second component here, oA ^ (A =_ B), is referred to as the proper default operator, and likewise for

the likelihood operator. This corresponds to Adams' notion of the conditional over "proper _ distributions

[19, p49], that is, distributions where the antecedent of the operator must be possible. The unmodified,

improper version of the default, A =_ B, corresponds to Adams' original notion of the conditional [30].
While the mathematics of the improper default is generally easier, it is sometimes better to break down

the default and likelihood operators into the two components, and then put the pieces back at the end.

Second, both DP and QDP can be seen as natural extensions to propoeitional logic. For instance,

the theorems for "o _ given later in Table 1 encode the provability relation in propositional logic. The

following lemnm further highlights the connection.

Lemma 4.1 First, all substitution insZances of the theorems and rules of inference of s_andard proposi-

tional logic that are sentences of Dp hold for D P. Second, in D P necessary equivalences can be substituted.

That is,

o(A (D(A) D(B)) ,

_ohere D(A) denotes any sentence of Dt, _ith an occurrence of the propositional formula A in a particular

posflion. Corresponding results for Q D P hold.

Third, some examples of theorem schemata of DP are given in Tables 1-3. These hold for d, e, • and

6 all less than ½. Certain dual forms, either on "O" or on "=:._, are given in the third column. These are
obtained by restructuring the formula and converting either "o _ or "=_" to their dual. In each case, either

the original form or the dual form can be proven by the consistency or consequence theorems presented
in Section 4.6. For each DP theorem in Tables 1-3, the QDp sentence obtalne_ be removing subscripts

(and in the case of the duals for theorems T14 and T16, making the _--_ operator _.2,) is a theorem

of QDP.
One important aspect of any DP theorem is the relationship between errors on the defaults and
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likelihoods.Forinstance,wecanrewritetheoremTI7' as

(A_-.C) ^ (B_-jC) -. AvB_-IC,

and note that this only holds for some values of/, and in particular holds for

ed
f _< _< min(e,d).

e+d-ed

In this case, f represents an error propagation function, which relates the errors in the DP theorem. If we

were to apply this theorem in some chain of reasoning to deduce A V B _- C, then we could either choose

to forget about the error f, as we implicitly do when using QDP, or we could use the error propagation

function to compute a value for f from e and d. Bear in mind that an error propagation function only

represents a worst-case bound on error. If we were to do a more precise probabilistic analysis, we may find
that error has shrunk to nothing, however, the error propagation function represents an upper-bound on

what error can be. In Section 4.6 it is shown that for small errors, DP behaves just like QDP, so a system

for reasoning about defaults and likelihoods can be constructed using the qualitative logic QDP, and then

optionally, error tracking facilities can be grafted on top with the use of error propagation functions to

give approximate probabilistic reasoning.
Finally, theorems of the logics can be generalised by uniformly changing conditioning information.

Lemma 4.2 Any theorem of DP (QDP) can be transformed to another by uniformly changing condition-

ing information. Given conditioning information C, a fo_nula D is _ransformed by uniformly applying

the following transformations to all non-propositional operators in "otrue --* D:

OA _ n(C-.A)

o.4 _ o(C ^.4)

B=_,A _ (CAB)=:,,A

B_-.A _ (C^B)_-.A

Versions of some of the theorems extended using this transformation are given in Table 4. Notice that

for theorems Tl1', T12', T13', and T14', the initial term %C ---," has been dropped: this is safe because

the _=_" and "_-" operators are always true and false respectively if the conditioning part is necessarily

equivalent to false. A similar situation holds for theorem T6'.

4.5 Relevance

The antecedent of a default or likelihood corresponds to the context in which the rule can be applied. So

the rule B =:, C can be applied when we know just B, nothing more or less. This feature is inherited from

the semantics of the conditioning operator in probability theory. As a result, defaults and likelihoods

cannot have their antecedents arbitrarily specialised. That is, the QDp sentence

(B _ C) -.(A ^ B _ C)

is not a theorem of QDP; so the context B cannot in general be specialised to include other information,

in this case A.

A second related feature of the logics is that there is no transitive relation applying to defaults or

likelihoods. The same holds for NP [1, Section 7]. That is, the QDp sentence

(A _ B) ^ (B _ C) -_A =_ c

is not a theorem of QDP. For instance, a counterexample to this transitive sentence is that penguins
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arebirds, most birds fly, and penguins do not fly. So we would not expect the sentence to be a theorem.
However, if we are told that the yellow-bellied warbler is a bird, and know nothing else about it, it is quite

plausible to us that the warbler should fly.
So for plausible reasoning in certain situations, we would like some form of transitive reasoning. Notice

the QDp sentence
(A _ B) A(AAB _' C) -_ A =_ C

is a theorem of QDP (TI2' in fact). Suppose we can obtain some additional information that implies the
rule B =_ C is the same as A A B =¢, C, so the condition A in the antecedent is not relevant. Then this

additional information together with theorem TI21 shows the original transitivity form above does hold.

This ability to modify the antecedent of a default or plausible rule requires reasoning about relevance,
where a condition in the antecedent is irrelevant if it can be added or deleted and still maintain the

correctness of the rule. in pr0babUity theory, such information can be obtained in a number of ways. We

can represent this information using the notion of independence, and in a more limited sense, following

Neufe]d eta[. [20], the notion of favouring.

Defln|tion 4.6 Proposition A is independent of propositionB 9iven proposition C if

Pr(BIC) = Pr(B[O A A).

Proposition A favours proposition B given proposition C if

Pr(BIC) < Pr(BIC ^ A) .

Lemma 4.3 If proposition A is independent of proposition B given proposition C then the foIlo_oing

sentences of QDp are true:

C=_B _ (CAA)=_B,

6':#A _ (6'AB):OA,

C_.-A _ (CAB)_)-A,

C_- B _-. (C^A)_- B.

If proposition A favours proposition B given proposition C then the sentences above only/ hold for the

fortoard direction, that is, replacing %*" bll "-'*".

It should be clear from this lemma that methods for reasoning about relevance are vital in plausible

reasoning in order to modify plausible rules so they can be applied to each particular context. Some

examples are given in Section 5. Causal (or Bayesian) networks can be used for this form of reasoning,
and the maximum entropy method provides a way of making independence assumptions "by default" [7].

4.6 Consistency and consequence

The question of whether a sentence from D_, is consistent can be converted to the question of whether
one of a set of simplex problems in the 2" variables {Pr(p)[p E Ep) has a solution. Consequently, DP

is decidable (this is similar to Probabilistic Logic [32]). For the purposes of this paper, it is not worth

obtaining axiom schemata and rules of inference for the whole of DP, since we are really only interested
in the case where the errors are quite small. A system encompassing the whole of DP would most likely

degenerate to the kind found in [33, pl0], where the schemata is close to an enumeration of primitive

operations in the simplex algorithm. Fortunately, a different approach is available. Adams [30,19] has

developed tests for consistency and entailment in his conditional logic, which have been extended by

Goldszmidt and Pearl [34]. Similar consistency and consequence tests are presented below for the default
and likelihood components of DP, and are easily adapted to QDP. These results show that reasoning can
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beperformed using the qualitative system QDP, and the approximate error bounds of DP propagated

concurrently.
Tests on consistency and consequence are presented below in terms of a clausal form. Consider the de-

fault component of QDP. An arbitrary sentence containing the default, possibility and necessity operators

can be turned into a conjunction of clauses, where each clause has the form

DU Ai_xv oV_ Ai_xa A_ _ Bi ----,ViEzcGi _ Hi ,

forsome index setsIv, IA, and Ic. Notice that allnecessityand possibilityoperators have been gathered

inthe antecedentofthe clause,by converting-_OA too--A where necessary,and allthe necessityoperators

have been combined into one using theorem T3.

Itisalsoof interest,though not essentialforthe development ofthissection,toconsidera more precise

interpretationof what itmeans fora clauseto be a theorem in QDP. Lemma 4.4 uses the above clausal

form to reinterpretthe definitionof a QDP theorem.

Lemma 4.4

_QD_, [3U AiE;v oVi Ai_z,,Ai =_ B_ _ Vi_xcGi _ Hi,

if and only if there ezists a 6 and _1 such that/or all e < 17

_DP I'IU AiEIv ¢_ii AiEI, t Ai ::_, Bi _ ViE;cGi ::_6e Hi •

For the Dp sentence in the lenuna, 6 is an error propagation factor, and 6e is an error propagation function,

which in this case is linear. The larger the value of 6, the faster error can propagate when this particular
clause is applied in some chain of reasoning. By comparison, Adams' notion of entailment corresponds to:

if and only i/for all • there ezists a 6 such that

_DP OU AiElv O_/_ Ai6IA Ai =_6 Bi --. Vi¢xcGi =_, Hi •

The difference between the two notions is that in QDP error is restricted to propagate linearly.

Likewise, we can convert sentences containing the likelihood, necessity and default operators in a

clausal form. The corresponding notion of a QDP theorem is given in Lemma 4.5.
Lenxma 4.5

_QDP Or" AiEIv oVi AiEIa Ai _ n_ Bi -'-* ViElcGi _.rn_ Hi ,

if and only if there ezisl_ a 6 and _ such that for all • < _l

_DP [3U AiEIv °7_i AiE/a Ai _'e"i Bi -'-* ViexcGi _:_"6c,.,Hi •

In this case, the error propagation functions, &,n_, are polynomial, and 6 is the error propagation factor.
Since a smaller likelihood represents more room for error, the smaller the value of 6, the faster error will

propagate when this particular clause is applied in some chain of reasoning.
Results below on consistency and consequence of clauses using the default operator are extensions of

several theorems in [30,19], and similar extensions can be found in [34], although Adasus' terminology
is not used here. The extensions introduce necessity and possibility. Consistency turns out to be the

operation on which the three kinds of consequence tests are based.

Logical tests for consistency and consequence are given in Theorem 4.6 for clauses containing the

default operator. These are given for DP and, because the error propagation functions are linear, can
be extended to QDP simply by dropping the error subscripts. While the consistency test in the theorem

with its "there exists a subset J" looks fairly involved, the kind of trick used in [34, Sect. 4] can be applied

to develop an algorithm that constructs the subset efficiently.
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Theorem 4.6 Consider the DI, sentence D given by

OU AiElv OVi AiEIA Ai ::_ Bi ,

, herc < ½for i e

1. The sentence D is inconsistent i_ and only if there ezists some ] C Iv such that U A _ is unsatisfiable

or there ezists some J C_IA such that

V' A (v,_Ad A,_ (A, --. B,)

_o

is unsatisfiable.

The De sentence C :_6 B is a consequence of D for some 6 < ½ if and only if D A (C =_6 ",B) is
inconsistent. This holds if and only if D itself is inconsistent or there ezists some J C_IA such that

^ (C v,e1 A,) A,_: (A,-_m,) ^ (C -.B)

is unsatisfiable. If C ::_6 B is a consequence for some 6 and can be demonstrated so using J, then

6 = _iE.r ei is a correct error propagation function.

3. The Dp sentence oC is a consequence of D if and only if D A D-,C is inconsistent.

4. The DI, sentence [3C is a consequence of D if and only if D itself is inconsistent or _ U ---, C.

When determining the consequences of a consistent set, whether a possibility is a consequence mny depend

on all elements of the set including the defaults, whereas whether a necessity is a consequence depends on

only the other necessities. In this ease, necessity can only follow from other necessities or inconsistency.
Also note that the theorem shows error propagates additively when reasoning with default rules. This is

a clear warning against long chains of such reasoning.
The resultant algorithm for checking consistency of QDP sentences is given in Figure 3.

Corollary 4.6.1 The de.faults-consistency algorithm is correct and uses at most [Iv [+IIAI_/2 satisftability

tests on the underlying propositional logic.

The first step of this algorithm also forms the basis of testing the consistency of sentences containing

only the necessity and possibility operator. Any such sentence can be converted to a conjunctive normal

form consisting of_ disjunct]on of conjuncts of the form I:3U Aie_v oVi. Each conjunct can be tested for

consistency using the first step.

Corollary 4.6.2 Let the QDP sentence D containing only the necessity and possibility operators be in

conjunctive normal form, and let ID[ denote the number of modal operators in the sentence. Then the
consistency of D can be determined using less than ID[ satisfiabilify tests on the underlying propositional

logic.

The drawback with this result, however, is that the size of the conjunctive normal form of a sentence can

be exponential in the si,.e of the original sentence.
Tests for consistency and consequence using the likelihood operator are given in Theorem 4.7.

Theorem 4.7 Consider the D_, sentence D given by

OU AiEIv O_ AieIA ii _"e_ Bi ,

where ei < _ .for i 6 IA. Let Imin denote the least subset of IA, l, such that U Ai_x "_Ai A A i A B i is
satisfiable .for all j 6 IA -- I. Such a minimum set is nniqee.
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1. The sentence D is inconsistent if and only if there ezists some j 6 Iv such that U A_eI... -,A_ A Vj

is unsatisfiable.

_. The Dp sentence C _,-! B is a consequence of D for some f < 1 if and only if D is inconsistent or
there ezis_ an ordered subset of the indices in 1,4 - Imp., ix, i2,..., ih, possibly empty ('h = 0), such

thatforj = 1,...,h,

U Ai_l.,_",Ai A A_ A Bii At<j "_Aih--"(C A B) , and (5)

[: ^,_r.,.-_A, ^k<_-.A,, -. (C-. B). (6)

If consequence holds, then a lower bound on f, the error propagation .function, is given by

f > wheree= rain eih ,
- ' ,<_k<_h

although _he error propagationf_nction can be linearin theel in some cases.

8. The Dp sentence oC isa consequence ofD ifand only ifD A D-_C isinconsistent.

_. The Dp sentence r3c isa consequence ofD ifand only ifD isinconsistentor

There is also a special case of this theorem that applies to non-iterated versions of the likelihood operator.

Corollary 4.7.1 Conaider the QDp sentence D given by

hi: AiElv qVi AiEI.4 Ai _,- B_ .

The QDp sentence C _- B is a consequence olD if D is inconsistent, or there ezista some I C IA - I,ni.

such thatfor ] 6 I,

U A,_x.,._A, A Aj A B, -. (C A B) ,and (7)

17 Ai_z.,.-.AiAj_I-_Aj -* C-_ B. (8)

I conjecture that the converse of this theorem also holds. The dual form of the corollary, converted to

apply to defaults, allows a disjunction of defaults to be the consequence of a single default. An example
of this corollary is theorem T17 and its dual.

An algorithm for checking consistency of QDP sentences is given in Figure 4. Step 2(b) has been

a_ded to this to make the algorithm more efficient when some of the likelihood operators are proper.

Corollary 4.7.2 The likelihood-consistency algorithm is correct and uses at most IIv[ + ]IA12/2 satisfia-

bility tests on the underlying propositional logic.

An algorithm for checking consequence is given in Figure 5. This algorithm assumes the consistency check

has already been made. The error propagation function in this case can be taken from Theorem 4.7 part 2,

and a tighter error propagation function is given in the proof of that theorem.

Corollary 4.7.3 The likelihood-consequence algorithm is correct and uses at most (llAI + 1)2/2 satisfia-

bility tests on the underlying propositional logic.

5 Applications

This sections demonstrates the use of the qualitative logic QDP on three anecdotal problems that reoccur

in the default reasoning literature.
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The first example resolves the paradox of the "vanishing subclasses'. The second example demonstrates

how reasoning about independence using causal networks can be integrated with the forms of plausible

reasoning just developed. The final example is the classic Yale shooting problem [8]. This example
highlights a subtle problem with the situation calculus when it is used for plausible reasoning.

5.1 The "vanishing" emus

Neufeld et al. have criticised the modelling of default reasoning based on infinitesimal probabilities [20,

p123] on the grounds that it makes "subclasses vanish _. Consider the following rules:

Ernu --* Bird, (9)

Emu =_ -Flies, (10)

Bird =_ Flies. (II)

The following are consequences.

We can conclude that "typically, birds aren't emns" and "typically, things aren't emns _. To show the

first is a consequence using Theorem 4.6, notice U - (Ernu --* Bird), Iv = 0, and try to show the rules

together with Bird =_ Ernu is inconsistent. This follows because the rules themselves are consistent and

U A (Erau V Bird) A (Emu -. -.Flies) A (Bird ---, Flies) A (Bird --* Emu)

is unsatisfiable.

If we take the O(e) semantics of the default operator literally then we could conclude, since _ is
infinitesimal, that "no birds are emus', or "nothing is an emu _. The real intent of the semantics, however,

is about approximations for e small. So instead we should conclude that the emu is just an uncommon

or non-typical bird, which in reality is true of emus. The approximate probabilistic semantics does not

cause subclasses to vanish; but it may cause you to deduce some subclasses must be non-typical.

5.2 Can Joe read and write

The importance of independence in default reasoning, and plausible reasoning generally, has been under-

lined by Pearl in his simple problem "can Joe read and write?" [7, Set. 10.3]. This is a good example of

why general transitivity should not hold for default reasoning. A twist is also given at the end to show
how likelihood reasoning can complement default reasoning.

Pearl introduces the propositions (I have altered the symbols)

Over-7 - :joe is over 7 years old,

PtdWr - Joe can read and write ,

EngPrf -- :Joe's father is a Professor of English,

Shakes =- Joe can recite passages from Shakespeare .

and the default rules (expressed in QDP)

RdWr =:, Over-7 ,

EngPrf =_ RxlWr ,

Shakes :_ RdWr . (12)
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Let Aute,.cy denote ruleset (12). Pearl also assumes that Joe is over 6 years old and is not retarded, so
that the default rules above seem reasonable.

Given, in addition, that Joe recites Shakespeare, Pearl argues that a reasonable conclusion is that Joe
is over seven years old. That is, we want to be able to infer the default rule

Shakes =_ Over-7 . (13)

On the other hand, given that Joe's father is a Professor of English, it is not a reasonable conclusion that
Joe is over seven years old. An argument being that Joe's father's profession adequately explains Joe's

literacy, so we don't need the more common explanation that Joe is over seven years old. We do not want
to be able to infer the default rule

EngPrf =_ Over-7 . (14)

The problem with the formulation at present is that the constraints on Shakes and EngPrf are

syntactically identical, but we hope to infer conflicting default rules for them. In QDP (and in NP) it

happens that neifher default rule (13) nor (14) can be derived. We do get, however, that

A1_teracy _QI>I" EngPrf =_ Over-7 _ (EngPrf ^ RdWr) =_ Over-7,

AZ_ter.eU _QDI" Shakes ::_ Over-7 _ (Shakes A RdWr) ::_ Over-7 . (15)

The problem as it stands is underconstrained. So, what information is missing?
Pearl's solution to the problem introduces the notion of causaiity. For instance, Joe's literacy is a partial

cause (and the only direct one occurring in the formulation) of Joe being able to recite Shakespeare. What
Pearl alludes to but never explicitly mentions is the causal network (a Directed-Acyclic Graph (DAG)

[35]) given in Figure 6. In this network, arcs correspond to the intuitive notion of "can cause ".
As Pearl and Verrna explain, such a causal network provides information about independence [35,

definition for DAGD, p376]. It should be pointed out that the notion of causality is merely incidental
to their analysis: it serves as a useful, intuitive focus for acquiring knowledge about independence. We

can subsequently apply the dependence information so obtained to default and likelihood reasoning using
Lemma 4.3.

Applying Pearl and Verma's technique of deducing independence relations to Figure 6, we get that
Joe's Shakespearean recital is independent of Joe being over seven, given he is literate. In QDP, it follows

that

RdWr ::_ Over-7 *---* (Shakes A RdWr) ::_ Over-7.

Let us denote by l_x the dependence information obtainable from Figure 6. Together with the default

conclusion (15), we get
AZiteracy U Fx _ODP Shakes =_ Over-7 .

The same does not hold for EngPrf, however, because in contrast we get that Joe's father's profession

is not independent of Joe being over seven, given Joe is literate. Because of this, the truth or falsehood

of default rule (14) is undetermined from Az_te,ac_ and F1. But, if we were also told that it is likely for
a child of a Professor of English to be under seven years old and literate, then default rule (14) becomes

false as required. That is 4.

Aliteraey 0 {EngPrf _ (RdWr A ".Over-7)} _QDP ".(EngPrf =_ Over-7) .

4Derive this result as follows. From Er, gPrf _- (RdWr ^ -_Over-7), the conditioned version of theorem T10, and the
conditioned version of the theorem given in Equation (2), infer -_(EngPrf ^ RdWr =:, Over-7). Finally. combine this with
default rule (15).
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5.3 The Yale shooting problem

A secondproblemthat needsto incorporateindependenceforasolutionis theYaleshootingproblem[8].

This problem has been the subject of considerable discussion in AI, and it is beyond the scope of this

paper to give a reasonable survey. In this section, the specific solution 6f Delgrande [36, Section 6.2] is

considered. In probabi]istic reasoning it is important to differentiate between what is currently known,
and what is not. However, the situation calculus, in which the Yale shooting problem is usually presented,

allows the representation of knowledge about static properties of a state but represses the representation

of knowledge about events. This causes problems in the subsequent representation of defaults, which we
discuss below.

The Yale shooting problem can be presented briefly as follows: a gun is loaded; one waits for a moment;
a shot is fired. We should conclude by default that the person is dead, assuming, of course, the gun was

well aimed at the person, etc. Early default reasoning systems could not make this conclusion; during the

wait, the gun would not stay loaded by default.

Delgrande [36, Section 6.2] initially suggested a situation calculus representation of this problem in

NP that in QDP becomes:

DT( Alive, So) ,

OT( Loaded, Result(Load, s) ) ,

T( Loaded, ,) ::_ T( Dead, Re,ult( Shoot, ,)),

T(/,,) = T(f, Re, lt(e, ,)).

Variables are given by e, f and s, and state So is some constant starting state. The first sentence reads

"Alive is necessarily true in state So _, the third "if Loaded is true in some state s then typically Dead
will he true in the state resulting from a Shoot in state s_, etc. Assume Result(S,) is denoted S,+,. To

adequately handle the shooting problem we now wish to infer that contingent on a certain sequence of

events taking place, a death will occur.

T (Load,So) A T (Wait, S ,)A T (Shoot,Sa) =_ T (Dead, $3) .

As Delgrande points out, this formulation cannot be correct. From the second sentence and theo-

rem T6' we get
-.T( Loaded, s) =_ T( Loaded, Resu/t(Load, s)),

and together with an instance of the fourth sentence (f = -_Unloaded),

-.T( Loaded, s) =_ -.T( Loaded, Result(Load, s)),

from theorem T7' we get
OT( Loaded, s) .

That is, the gun is alwa_ls loaded! If we added an Unload event to the above formulation that resulted in

the gun being unloaded, we could similarly deduce that the gun is always unloaded!

Delgrande suggests repairing this conflicting state of affairs by changing the last sentence to (assuming

that equality is introduced)

(f = Alive) V (T(f, ,) =_ T(f, Result(e, s))) ,

(e= Shoot) V (T(Alive,s) =_ T(e,Result(Shoot, s))) ,

which together say people do not tend to remain alive if they are shot, or changing the second last to

(T( Alive, s) A T( Loaded, s) ) =_ T( Dead, Result(Shoot, s) ) .
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In addition,wewill haveto takethiskind of evasiveactionfor everyeventtype. Adoptingthefirst
strategy,thesimpleconcept"thingstendto staythesame_ is starting to look decidedly lengthy. We are
required to explicitly detail all those exceptions default reasoning is supposed to circumvent. The second

strategy seems to introduce an unnecessary complication: if you shoot a dead person they will remain

dead, so why bother specifying they should be alive before the shooting.

The real problem lies with the representation of knowledge about events. Without knowing which event
occurs at a state, we know things will tend to stay the same. Once we know which particular event occurs,

however, we also know for sure that certain things will change. The antecedents in the conditionals in

Delgrande's formulation need to be qualified with knowledge about events to block the conflict between
the second and fourth sentences. We do this by modifying the sentences to allow explicit representation

of knowledge about events:

DT( Alive, So) ,

O(T( Load, s) --* T( Loaded, Next(s))),

T( Loaded, s) A T( Shoot, s) =_ T( Dead, Next(s)),

T(f, s) =_ T(f, Next(s)) ,

where T(e, s) about an event e such as Shoot denotes that it is known that the event e occurred in

situation s, and Next(s) denotes the state after state s. Denote this set of sentences by A,hooting.

But with the problem as formulated in A,_ooting, the required result is not forthcoming. Again we need
information about relevance to show how the redrafted sentences can have their antecedents sufficiently

specialised.
First, the following can be inferred from the third rule in A,hooti,g given that if a loaded gun is shot

at someone, then events strictly prior to the shooting are independent of possible death,

T( Load, So) A T( Wait, Sx ) A T( Shoot, S2 ) A T( Loaded, S, ) A T( Loaded, $2 ) ::_ T( Dead, $3 ) •

Second, the following can be inferred from the fourth rule in A,hooti,g given that whether a gun stays

loaded is only dependent on prior Unload or Shoot events.

T( Load, So) A T(Wait, S, ) A T( ShooL S_ ) A T( Loaded, S, ) ::_ T( Loaded, $2 ) .

This information about independence, call it r2, is sufficient to yield the required result.

A,_oo,_.oU r2 _qDP T(Load, So) A T(Wait, S,) A T(Shoat, S_) =_ T(Dead, Sa) •

Notice that I_2 could have been obtained automatically using the "default" independent assumptions

inherent in a maximum entropy approach [7].

The specification of F2 can be seen to involve as much detail as Delgrande's earlier suggestion. So

where is the advantage? The defaults remain in a simple form, and the exceptions are instead coded in

the modular form of causal (independence) information about events.

6 Further Comparisons

This section compares the logics DP and QDP with some related approaches. Halpern and tLabin's and

Halpern and McAnester's likelihood logics, and Neufeld et al. influence graphs are compared because they
have also been motivated by probability. Comparisons with Adams' conditional logic have been sprinkled

throughout Section 4, and are not reiterated here. The last comparison given here is with Delgrande's

NP; this system had an historical influence on the logics DP and QDP.
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6.1 Halpern and Rabin's likelihood logic

Halpern and tLsbin propose the unary likelihood operator L with semantics [14, p386]

Lp is best thought of as saying Up is reasonably likely to be a consistent hypothesis. _

This should not be confused with Up is reasonably likely _, the interpretation Halpern and McAUester give

to Lp [9, p5].
For instance, suppose a lottery with 1,000,000 tickets is being held, then the following can be deduced

by applying their Axiom AX6 repeatedly:

L(someone will win the lottery)

1,000,000

V L(person i wm win the lottery) . (16)
i=1

The right hand side of this equivalence reads, there exists a particular person who is likely to win the

lottery. In the Oxford dictionary sense of the word "likely _, this is certainly not true before the lottery
is held. So in the Halpern-McAllester interpretation, the sentence (16) above can be interpreted as

true _-, false. This is a variant of the lottery "paradox _. Because they assume that likelihood reasoning

is precise, they conclude that the Halpern-P_abin interpretation must be more appropriate.
By contrast, in the framework proposed here it is taken for granted that likelihood reasoning may be

imprecise. As explained aider Definition 4.5, QDP suffers from the lottery '_paradox _ in a sense, but it is

viewed as an anomaly, an inherent consequence of modelling imprecise reasoning with a precise logic. Of

course, such anomalies can be avoided by either using heuristics about plausible reasoning (Udon't make

too many assumptions_), or by resorting to numeric methods which allow more careful tallying of degrees

of imprecision.
Notice that interpreting Lp to mean Up is a consistent hypothesis _ yields the following transformation to

QPD: Lp _ op, and Gp _-, pp. Indeed, their axioms on non-iterated modalities each have a corresponding

theorem in QPD.
Halpern and tLsbin propose instead that iterated modalities of the form LiGp be used to model up is

reasonably likely _, and they give soundness results to support their claim. There is, however, a serious
methodological problem with this approach: knowledge expressed in the form they propose is non-modular
and cumbersome. A sentence such as uP1 is reasonably likely given/)3 _ is represented in QDP simply as

/)3 _" P1. In their logic it translates to

-_G-_P_ A -_GP2 ^ -_GP4 A GPs _ LGP_

in one situation, and
",GP_ A ",G'_P2 A -_GP4 A GP3 =_ LGP1

in another. These cumbersome translations occur because, as they explain [9, pT], their representation has

no means of making likelihood contingent on what is currently known (for instance, by using conditioning,

the role played by the left hand side of the "_-" operator). Worse still, if the model (and consequently

the atomic propositions used) becomes extended, the appropriate translation must be extended as well.

In addition, Halpern and P_bin give no evidence that non-trivi_ theorems hold about iterated modalities
of the form L iG.

6.2 Neufeld and Poole's favouring formalism

Neufeld e_ aI. present influence graphs, a qualitative system for reasoning about favouring [20] that is

related to Suppes' causal algebra [37]. B favours A when Pr(A]B) > Pr(A). It was argued in Section 4.5

that favouring provides an important complement to the logics presented here.
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Favouringalone,however, is not sufficient information on which to base a decision. This stems from
the fact that favouring is for reasoning about shi.f'gin belief and not current strength in belief. For instance,

it is well known now that smoking favours cancer (that is, a smoker is more likely to have cancer than

a non-smoker). But the knowledge that a person smokes is not sufficient evidence on which to base a
conclusion that the person has cancer. It merely provides an additional degree of support for such a

conclusion.

6.3 Delgrande's conditional logic NP

There is a strong correspondence between the theorems of QDP and Delgrande's NP [1]. The only axiom

of NP that is not also a theorem of QDP is the CV axiom given by

-,(A= B) -. (A= C) -. (A^ = C,

although thisissimilarto the QDP theorem T14t Notice,however, that,by adapting T14' we get that

-(A  ,6/2 B) -. (A C) -. (AA-B) C.

This versionof the CV axiom does not alsobecome a theorem in QDP because the firstdefaulthas an

errorthat isa differentorder of magnitude to the second two defaults(e6 compared with e and 5).

Also, necessityisintroduced into QDP and NP in a very differentmanner. Nevertheless,theorems

involvingnecessityin NP given in [1]axe also theorems for QDP. Consequently, almost every theorem

of NP that is a sentence of QDp is also a theorem of QDP.

7 Conclusion

This paper has examined the problem of reasoning about defaultsand likelihoodfrom a probabilistic

perspective. The presentationhas been one of theoreticalanalysis,comparison with existingsystems,

and review of anecdotal examples. The approach developed has extended some existingsystems [19,7,

1] and put some others in a clearerperspective[14].This highlightedthe approximate nature of the

reasoning forms, the dualitybetween them, and the need for complementary reasoning about relevance

and error propagation. Algorithms have also been presented for determining some types of consistency

and consequence for both logics,qualitativeand quantitative.

The followingresearch issuesgive some idea ofhow thisarea might be furtherdeveloped.

Causality,independence [7]and favouring [20]play a complementary but vitalrole to defaultand

likelihoodreasoning. They help in the determination of relevance,for the derivationof plausiblerules

applicableto a system's currentcontext. Suppose we have separate informationabout relevanceand de-

faults.How might reasoningabout both theseforms be integrated?For instance,how can the consistency

and consequence algorithms be interfacedwith algorithmsfor reasoningabout independence?

There isa remarkable similaritybetween Delgrande'sconditionallogicNP and the probabilisticlogics

presented here.With the necessityand possibilityoperators,the logicspresented here have an abilityto

express sentences roughly in the realm ofautoepistemic or defaultlogics.What are the relationshipsto

theseother approaches?

How should the effectof the decisioncontextbe integrated?For instance,one would liketo be able

to obtain the defaultreasoningstructurepresentin the layeredcontrolsystems of Brooksian robots [38],

where each layerisintended to handle a differentclassof decisionproblems. How might these layered

systems be developed?

Given that defaultsand likelihoodshave been representedhere as probabilisticrules,how might they

be learnedfrom data? Machine learningtechniquesforruleinductionhave been developed,but theseonly

allowing one particularpropositionalsymbol (or concept) in the consequence of the rule.Some methods

are described in [39,40,25]. To learn a set of defaults and likelihoods, more general approaches are required
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that simultaneously learn rules with a variety of different propositional symbols in the consequence, as

found in [41].
At what point does qualitative reasoning of QDP have to be augmented with quantitative reasoning of

DP to produce reliable results? Furthermore, when do the approximations inherent in DP break down so

that a system needs to be developed using more thorough probabilistic reasoning? It may be necessary to
reason about uncertainty using approximate numeric techniques, and to use the plausible logics developed

here merely at the man-machlne interface. For instance, one observable use of default and likelihood

reasoning in people is explanation and presentation of results.
Implementation and application to real problems is clearly one important way to explore these plausible

reasoning forms further.
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Appendix Proofs of Lemmas and Theorems

Proof of Theorem 4.1 First, substitution instances of propositional logic hold for DP because the

interpretation of theorems for DP is given in terms of propositional logic ("not", "and _, etc.). Suppose

E 6 QDp is some substitution instance of a theorem of propositional logic. Consider E' 6 Dp obtained by

transforming =_ to =_e and __a to _-e" for some e and e. E' is also a substitution instance of propositional

logic, so it is a theorem of DP. As this holds for arbitrary e and e, E is a theorem of QDP.

Second, equivalences can be substituted. Suppose Pr(A _ B) = 1, then

Pr(O(A)) = Pr(C(A) A (A _-,B)) = Pr(C(B) A (A 4--,B)) = Pr(C(B)),

and the result follows from the definition of a theorem in DP. A similar proof applies for QDP. []

Proof of Lemma 4.2 Any sentence that holds for an arbitrary probability distribution must hold for

an arbitrary probability distribution conditioned on some C given that Pr(C) > 0. That is, given that

Pr(C) > 0, we can make the transformations

Pr(A) _ Pr(AIC)

Pr(AIB ) _-* Pr(A[B A C)

and the sentence must still hold for any arbitrary probability distribution. This corresponds to the

transformations given in the leman. Notice there is no confusion in applying the transformations because

the operators do not nest. n

Proof of Leman 4.4 First, notice that the order of magnitude definition of Definition 4.5 applies if and

only if there exists constants ci for i 6 Ia and d/for i 6 Ic and _7 such that for all e < _ and probability
distributions Pr,

To show the only if part of the theorem, assume the 6, e condition in the leman holds. Then let ci = 1
for i 6 IA and d/= 6 for i 6 Ic, so by above, the clause is a theorem of QDP.

To show the if part of the theorem, assume the clause is a theorem of QDP so constants ci for i 6 IA

and di for i 6 Ic and _7exist as above. Let a = miniE;_cl, and 6 = raaziEzcdi/a, and 17' = _7c_. Pick any

e' < T/and note • = e'/a < 7. We now have that 1 - cie < 1 - d, and 1 - die _> 1 - _e'. So if a probability

distribution Pr satisfies the clause (17) using _ and e, then it also satisfies the Dp clause in the theorem

using _7' and e'. So this clause is satisfied for every distribution, m

Proof of Lemma 4.5 The proof proceeds as for Leman 4.4 but using

_p, []U AiEzv o],_AiEZA Ai m-c,,-,Bi --* ViEzcGi _a,,', Hi,

instead of formula 17. There is a difference in showing the if part of the theorem; 6 is now constructed in

an inverse manner. Let

di
a = rnaz_el c ",/'_ and 6 = rninie_c _ ,

and proceed as before, noticing that we are dealing with quantities such as 6(d) "' rather than 1 - 6d. []
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Proof of Theorem4.6 part 1 First,assumeD is consistent and we shall prove both unsatisfiability

conditions fail. With D consistent, Pr(U A _) > 0, so U A _ is satisfiable, and the first unsatisfiability
condition fails. To show the second unsatisfiability condition fails for each J, it is sumcient to show it fails

for J = IA, because if D is consistent, then any subset of D is consistent, so, correspondingly, the same

reasoning applies for any subset J of XA. We shall show this failure by contradiction. Assume the second
unsatisfiabilitycondition holds for J"= IA, then for any probabilitydistributionsuch that Pr(U) = I,

Pr(Vie]Ai A-,Bi) = Pr(ViejAi). Therefore,

maxis] Pr(Ai A-_Bi) > _ie] Pr(Ai A -_Bi) Pr(Vle]Ai A-,Bi) Pr(Vie]Ai)
- lJ[ >-- [J[ > IJI -> [J]

for any j. Therefore either Pr(Aj) = 0 for all j 6 It, or for at least one j 6 IA, Pr(-,B#IA#) >_ _7" This

gives the contradiction since ej < ]_-[.
Second, assume both unsatisfiability conditions fail and we shall prove D is consistent. Notice because

the second unsatisfiability condition fails for every J C/,4, there exists an ordered subset of Lt given by

i,,...,/,, (where m = 11-41),such that UAAi# At>j (Ai, --, Bi,) is satisfiable for ] -- 1,...,m. Let truth

assignment tj demonstrate this satisfiability for j = 1,...m. Also let truth assignment t_ demonstrate
the satisfiability of U A V# for j 6 Iv. These second assignments exist because the first unsatisfiability
condition fails. Now define the probability distribution Pr as

11,:,.....P,.(c) = ", +
kfl,...,m i=l,...,k- 1 jEIv

where the truth assignment g(C) takes the value 1 if C is satisfied by t, and 0 otherwise. By construction,

this is a well-defined probability distribution that satisfies all the right inequalities for arbitrary ei < 1.
[3

Proof of Theorem 4.6 part 2 To show the only if part of the theorem, assume D ^ (C =_6 -_B) is

consistent. If C =:,_ --,B with 6 <_ then clearly ",(C =_6 B), so D A--(C :=_6 B) is consistent, so it must

be falsethat _vP D _ (C =_6B)'.
To show the ifpart ofthe t,heorem, assume D A (C ::_a--B) isinconsistent.IfD isinconsistent,then

clearly_z)P D ---*(C =_6 B), IfD isconsistent,by part 1 of the theorem and the consistencyassumptions

justmade, itmust followthat

-(_f A(V,e:A,v C) Aie: (A_-.B,)A(C -.-B)) ,

for some J C_ 1.4. From the second half of the proof for Theorem 4.6 part 1, this follows for any 6 < 1,

not just 5 < [/_/[.Noting that (Vle]Ai V C) isequivalentto (Vie]A_ V C Ai_j ",Ai) and taking this

disjunctionout through the negation,itfollowsthat

U A (Vie_,Ai) Ale] (Ai -'_Bi) -'*C A B ,

U A C A -_B --. ViejA_ A -_Bi.

Notice that if_ E ---*F then Pr(F) > Pr(E) for any probabilitydistributionPr. So forany distribution

Pr such that Pr(U) = 1,

Pr(CA B) >_ Pr((VleyAi) Aie] (Ai --* Bi)) = Pr(Vie]A,) - Pr(Vie#Ai A--Bi) ,

and Pr(ViejAi A-_Bi) _> Pr(CA-.B). Let Pr be any probability distribution satisfying nu Aie_ v oVi Aie_
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(A, =:,,, B,). So Pr(Aj A -,Bj) < ejPr(Aj) < ejPr(V,ejA,) for any ] even if Pr(Aj) = 0. Consequently,

iEY

ut = (E,,, So

Pr(CA B) > (_I_ 1)Pr(V_e_A_ A--BI) _> _56Pr(CA-,B) ,

which is the required inequality to show C =_6 B. Z3

Proof of Theorem 4.6 parts 3 and 4 The sentence <>(7is a consequence of D if and only if D A -, o C

is inconsistent, by definition of consequence and inconsistency. Replacing -, o C by O-_C' shows part 3

holds. Similarly, part 4 holds but this time we can simplify the inconsistency of D A o-_C by using part 1
of the theorem. O

Proof of Corollary 4.6.1 We shall show that the algorithm reaches to the end if and only if the

sentence is consistent. By the theorem, it is sufficient to show it reaches to the end if and only if for every

j 6 Iv, U A Vj is satisfiable and for every J C_1.4, U A (Vie.,Ai) A_E_ (Ai --* B_) is satisfiable.
Clearly Step 1 handles the first case correctly.

Consider step 3(a). Notice that if for ] E J, UAAjA_E_(A_ -'* B_) is satisfiable, then UA(Vie_,Ai)A_e_,

(Ai -4 Bi) is satisfiable for every J' C_ J containing j, So we now only need to consider subsets not
containing j. The repeat loop in Step 3 simply uses this fact iteratively to eliminate each possible index

] from the original set J. So the loop terminates short if and only if this satisfiability fails, which means

the original sentence was inconsistent. []

Proof of Theorem 4.7 part 1 First prove I... exists and has a unique minimum. Notice Lt is an

upperbound on I,._., so some (but not necessarily unique) I,.., exists. Suppose a set I' exists which is a

subset of every possible I..., and that 17 fie/, -,A_ A Aj A Bj is unsatisfiable for some 2"E IA -- I'. Then
this unsatisfiability will also hold for any I, ni., so ] must also be in I.._.. So we can place 2" in I' too. If

we start with I' = 0 and iterate this operation to a fixed point, we clearly obtain the unique I' = I...

because an invariant of the operation is _any I,,.. must be a superset of I TM.

Suppose the unsatisfiability condition fails, that is, for each 2"6 Iv that UAiez.,_ -_Ai A l_ is satisfiable.

So there exist truth assignments demonstrating the satisfiable of these. There also exist truth assignments

satisfying U Aiex..,_ --Ai A Aj A Bj for j E IA -- I,.i., by the definition of I..,,. Take a probability
distribution that makes each assignment in the first set infinitesimally small, each assignment in the second

set equiprobable, and any other truth assignments probability zero. So Pr(l,_) > 0, and for 2"E I,t - I...,

Pr(Bj]Aj) is greater than or arbitrarily close to _ etc. This distribution demonstrates D isI/AI-IX.,..I '
consistent.

Suppose D isconsistent.Consider any probabilitydistributionPr that demonstrates this.Let I =

{i 6 IA : Pr(A_) = 0}. So Pr(U A_ex "-Ai) = 1. Since Pr(Vj) > 0 for each ] 6 Vj, it follows that

Pr(U A_EI --A_ A _) > 0 as well, so the corresponding propositional sentence must be consistent. Also,

Pr(Aj) > 0 for 2" 6/.4 - I, so since D is consistent Pr(Aj A Bj) > 0 and Pr(U A_ez -_Ai A Aj A Bj) > O,
so the corresponding propositional sentence must be consistent. A side effect of this is that I,._. C_ I,
therefore the above satisfiability conditions holding for I also hold for I,._., as required for the theorem.

[]

Proof of Theorem 4.7 part 2 First prove the only if part of the theorem. So assume C _.-_ B is a

consequence of D for some 6. It is sufficient to prove that if D is consistent and U A_e;_.,_ --A_ ^ C A -_B
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is satisfiable,then thereexistsanorderedsubset of the indices in IA --In,in, ix,ia,...,i_ such that

formulas (5) and (6) are true. Do this by contradiction. Suppose there does not exist such an ordered
set of indices. Then there exists an ordered subset of the indices in IA -- In, n, I = il, i2,.-., ih such that

formulas (5) are true, but formula (6) falls and there does not exist an index ih+l such that formula (5)

applies for that index. Note that this occurs only if

{7 AiEI,,.,, ",Ai A Aj A Bj AiEI ",Ai A -(C A B)

is satisfiable for every j E 1.4 - Im._ - I, and

U AI_z,.,. ",Ai A_z -,Ai A C A -',B

is satisfiable. Call the set of [Ia - Imin - I[ truth assignments satisfying the first form above Tt, and the

truth assignment satisfying the second form T2. By the definition of I,,,,_, we have that U Aiez_.,_ -_Ai A

Aj A Bj is satisfiable for j E I. Call the set of ]I] truth assignments satisfying this T_. Finally, since D
is consistent, we also have that U AiElm,. -Ai A Vj is satisfiable for j E Iv. Call the set of [Iv[ truth

assignments satisfying this T4. Now for _7vanishingly small, consider the probability distribution Pr that

makes truth assignments in T4 have probability _, those in Ta have probability _-_, the one in T_

have probability ,7(1 - *7), those in TI have probability _, and any other truth assignment have

1-_ , for j E I,t --Imi,, --I, Pr(-_B[C) > 1-_/, etc. Clearly,probability 0. This makes Pr(BjIAj) __ ItA-I_,.-zl

Pr with a suitable value of _7can be used to demonstrate D A -_(C _-! B) is consistent for any f < 1. So

we have proven the contradiction.

Next prove the if part of the theorem. Clearly, consequence holds if D is inconsistent. So assume it
is consistent, and assume without loss of generality that ij = j for notational convenience. Consider any

probability distribution Pr such that

_Pr r3u AiEIv o]/i AiELt Ai _'-e, Bi •

So for each j E IA - Zn,,m,

Pr(Aj A Bj) >_ _Pr(Aj A -_Bj) , (18)

even if Pr(Aj) = 0. From part 1 of the theorem we also know that Pr(U Aicl..,. -Ai) - 1, so this
term can be effectively ignored in probability statements that follow. If h = 0, then from formula (6) it

follows that Pr(C --* B)=I, which implies Pr(B [ C) = 1, so the if part holds. Otherwise, h _ 1. From

formulas (5) and (6), we have that

SO

E Pr(At A',Bt) >_ Pr(Vt<._At A',Bt) 2> Pr(C A',B) .
t<_h

Also, there must exist sets Pj _C (1,...,j - 1) such that formulas (5) can be replaced by

U Aict,.,. -_Ai A Aj A Bj AtePj -_At --* (C A B) ,

(19)

for j = 1,..., h. Then

W(Ak) 2>W(V  p Ak) 2> W(Ai
t_P_

These inequalities are strung together below to produce the desired result.

(20)
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For j E 1,..., h, define

m n'ffln ek ,
_EP_

1-ej-i- E _-_ .
39 - ej _ : jepk

We shall prove by induction on j that

h h
3'k

_[: _'kPr(Ak A Bk A C A B) "I-_"_ _-k _[:
k=j k=j I : IEPk,l<j

Pr(Al A BI) >_

h

]CP,(A_̂-m).
k=j

(21)

Assume it is true for j + 1. Consider the case for j. Notice that by formula (18)

1 -ejeiPr(A# A Bj) + ##_,_p.Pr(At A Bz)

IEPj

_> P,-(A,̂ -Bj) +-yj_ P,-(A_).
_ePj

Adding thisto the inequalityfor the inductionhypothesis,formula (21) with j + I,we get that

So

h h
"Yk

?#Pr(Aj A B#) + _ _/_Pr(Ak A Bk A C A B) + _ -_k
k:jd-1 k:j I : IEPb,I<j

h

>_ _Pr(A. A-_BI) +7# E Pr(A_).

t=j leP#

Pr(Ai A Ba)

h h
_fk

F_,"f_P"(A_Av, Ac AB) + __,_ __, P,.(A,Av,)
k=j k=j i : IEPb,i<j

>_ _ Pr(Ak A ".Bk) + 3'1 ___ Pr(AI) - Pr(A# A Bj A ".(C A B))
k=j IEPj

By formula (20),the induction step isproven. Notice that thissame argument works forthe base case of

the induction proof,ifwe startat j - h using 0 >_0,so the inductionproof iscomplete.

Finally,forj = I in formula (21),we have that

h h

E'ItPr(Ak ABh AC AB) > _ Pr(Ak A'.Bk) .
k=l k=l

By formula (19),itfollowsthat

7_ Pr(C A B) >_ Pr(C A-_B) .
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So 1
Vr(BlC) >_

The right-hand side of this inequality gives the error propagation function f for this consequence. This

can be evaluated using the definitions of "U,/3j and Pj given previously. Clearly, the smallest this error

propagation function can be is when Pj = {1,...,j - 1] and flj = el -- e for j _ h. In this case, a simple

induction proof shows that

1-e 1+
e

Summing these over ] and simplifying gives

,> 1_ e+(i_e) k .

In contrast, if Pj = O, and _j = e, then f > e []

Proof of Theorem 4.7 parts 3 and 4 The same as for Theorem 4.6 parts 3 and 4. Notice, also, that

Iml, remains the same if a possibility is added to D. []

Proof of Corollary 4.7.1 The if part of the corollary follows from Theorem 4.7 part 2. Notice that

if Pj = 0 for each j, then the error propagation function developed in the proof of Theorem 4.7 part 2

becomes 1

This behaves linearly for small e_. If any Yj # 0, however, this linear behaviour no longer exists. []

Proof of Corollary 4.7.2 The repeat loop in Step 2 simply performs the construction described in the

proof of Theorem 4.7 part 1. This iteratively builds up I,,,. The repeat loop terminates when for all

] 6 IA -- I, U Aiez -',Ai A Aj A Bj is satisfiable. Otherwise, the algorithm is a direct implementation of

Theorem 4.7 part 1. []

Proof of Corollary 4.7.3 The algorithm builds the ordered set of indices in turn. Clearly, if it fails at

step 3(c), then no such ordered set can exist. []
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Pr(A):

oA

I,
0 e

_-_ A

oA

e 1-e 1

Figure 1: Quantitativemeasures of beliefsin A

Pr(A):

oA

o o(d O(e)

I_).- A

OA

1 - O(e) 1

Figure 2: Qualitativemeasures ofbeliefsinA

T1 DA (when _ A)

T2 o(A-. B) -. (DA -. oB)
T3 (DA A OB) *-+ O(AAB)

T4 OA --_ oA

o A (when _ -`A)

(-ò A ^ oB) -. o(_A ^ B)

(oA v oB) _ o(A v B)
OA --_ oA

Table 1: Theorem schemata (and duals)on "D _ and %"

TSI OA _ [=_'oA

T6 [ O(A_B) -+ (t:_,A -+ t:_,B)
T7 -`(F#', A ^ _, -`A)

T8 oA ^ (A =_. B) --+ oB

oA 4--+l_-oA

O(A-.B) -+ (_-.A -. _-_B)

(_,-.A v _o -`A)

(o.4 ^ roB) -+ A_-.B

Table 2: Theorem schemata (and duals)relating_" and "_-_ to _O" and %"

T9

TI0

TII

TI2

T13

T14

T15

T16

T17

A =_ A

A =_. B -_ t::_.(A---*B)

(_. A ^ _6 B) --. _.+_ (A ^ B)
_, A --_ (A =_ B -+ _,+6 B)

_, A -_ (_ B -+ A _.+6 B)

I_,.-_A -+ (_, B -.-.A _, B)
a

(A _. C) ^ (B _, C) -+ (Av B) _.+_ C

_.-. (A ^ B) -_ (-`A =_.-`V -. B _ A)

(A v B =__+.f_ C) -+ (A _. c v B =_, C)

A_-eA

s_-_ (A AB) --. A _-, B

_,+d (,4 V B) -. (_ ,4 V _d B)
_, A --, (F_,-d B _ A _-a-, B)

_, A _ (A _"d B --* _-__, B)

_. A -+ (A _d B -. _-%,B)
(AVB)_-,+dC --+ (A_-_C V B_-_C)

_ (A ^ _) --, (_ _ -`A _ -,.4 _-,+ B)

(A _, C) ^ (B _-_ C) -+ A v B __._ C

Table 3:Theorem schemata (and duals)on "::_"and "_--_
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T6' I o(C ^ .4-.B) -. (C =_,.4 -. C =. B)

T7' I (C =_, A) A (C =_, -,A) --, -,oC

Tn' I(C =_,.4)̂ (C =_6B) -. C =,+6 (.4̂ B)
TiT I C=_,A -. (CAA=_6B _ C=_,+_B)

TI3' I C=_,A --, (C_6B --, CAA:::,,+6B)

TI4' I C_--,.4 --_ (C::_,B --, CAA::)._, B)

Table 4: Conditioned theorem schemata

Input: A QDp sentence

DU Aielv cVi A_eIA Ai =_ Bi •

Output: The consistency or inconsistency of the sentence.

Algorithm: Check the two sets of satisfiabillty conditions in turn.

1. If for some j 6 Iv, U A Vj is unsatisfiable, return inconsistent.

2. LetJ = IA.

3. Repeat,

(a) Find a j 6 J such that U ^ Aj A_ej (Ai ---' Bi) is satisfiable.

(b) If no such j can be found, return inconsistent.

(c) Else,J = J-{2"}.

Until J = 0.

4. Return consistent

Figure 3: The defaults-consistencyalgorithm
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Input: A QDp sentence

DU Ai_Iv oR AI_A Ai _s -n' Bi •

Output: The consistency or inconsistency of the sentence.

Algorithm: First construct Imi,,, then check the possibility conditions.

1. Let I = ¢.

2. P_epeat,

(a) Find some j E/.4 - I such that U Ai_z -,Ai A Aj A Bj is unsatisfiable.

(b) If some j found and oAj is in the possibilities in the input sentence, then
return inconsistenL

(c) Eke, if some j found, I = I U {j}.

Until no j found.

3. I is now equal to In, in. If for some j E Iv, U Ale!-_Ai A _ is unsatisfiable, return
inconsis_eng.

4. Else return eonsis¢enl.

Figure 4: The likelihood-consistency algorithm
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Input: A likelihood C _.m D, a consistent QDp sentence

oU Aielv oV_ Aiex_ Ai _n, Bi ,

and its index set Imin.

Outputz Whether the likelihood is a consequence of the sentence for some value of m.

Algorithm: Build up the ordered subset of IA iteratively.

1. If U Aiel_,,_ -_Ai A C A -_B is unsatisfiabh, return is a consequence for any m.

2. Set I = 0.

3. Repeat,

(a) Find some j E IA - Imin - I such that

(b) If some j found, I = I U {j}.

(c) Else return not a consequence.

Until U ^_ex.,. -Ai A C A "_B AiEI Ai is unsatisflable or I = IA -- I=in.

4. If the loop terminated only because I =/A - I=i,,, return not a conseqnence.

5. Else return is a consequence for some m.

Figure 5: The likelihood-consequencealgorithm

C EngPrf

RdWr

Figure 6: Dependency network for %an Joe read and write?"
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